人気ブログランキング | 話題のタグを見る

An optical module is a single, packaged form factor that works as a transmitter and receiver. An optical transceiver is used in an optical network to convert electrical signals to optical signals and vice versa. Optical modules are widely deployed in optical networking for broadband. While optical module market is driven by the use of broadband in every field. Global adoption of the Internet is driving rapid growth of the data center and the need for very high speed network transmission. Optical transceivers are given full play to upgrade telecommunications networks and launch very large data centers. What’s the future of optical module market? Will it still thrive? You may get a clue in this article.

optical module

Next Year Is Going To Be Huge For 100GbE

According to IHS Infonetics (NYSE: IHS), the long-awaited ramping up of 100 Gigabit Ethernet (100GbE) optical modules in data center applications may finally be forthcoming. Sales of 40G and 10G optical modules still remain the mainstream in the interim, uncovered by the market research firm in its biannual "10G/40G/100G Data Center Optics" report. As the figure shown below, higher bandwidth and server virtualization calls for higher data rate. The market for 100G data center optics is accelerating, but it has yet to be challenged by widespread data center deployment in the way 40G QSFP optics have. This will change dramatically in the next few year as cheap 100G silicon reaches production and QSFP28 shipments surge as a result," Schmitt said. "Next year is going to be huge for 100GbE.”

Server Virtualization Drives Higher Data Rates

Server Virtualization Drives Higher Data Rates. Source: Dell’Oro. 07/ 2012


The global optical module market increased from from $3.2 billion in 2013 up to $4.6 billion in 2015, and this dramatic increase is anticipated to grow to $41.1 billion by 2022 driven by the availability and cost effectiveness of 100G, and 400G modules. Next generation optical transceiver devices use less power, are less expensive, and are smarter and smaller. The adoption of widespread use of the 100 Gbps devices, followed by 400 Gbps devices and the vast increases in Internet traffic are vital to helping manage change in the communications infrastructure markets.


Global Industry Analysis

Geographically, North America is seen as the most active optical module market due to rising demand for communication network. In addition, the rising deployment of 100G optical modules for high speed networks is another factor contributing to high demand for optical transceivers. Europe seconds North America in terms of demand for optical transceivers. Moreover, the combined use of 40G and 100G modules in Europe and North America is expected to show steady growth in demand for optical modules in near future. In Asia-Pacific, China is expected to be the fastest growing market for fiber optic transceivers owing to its increasing demand for deployment of 100G equipment.In North America, JDS Uniphase Corporation, Oclaro Inc., Finisar Corporation, Cisco Systems, Alcatel-Lucent and others are the main manufacturers of optical modules. In Asia-Pacific, Avago Technologies, Wuhan Telecommunications Devices Co. Ltd and FS.COM are some of the leading manufacturers of optical transceivers.


Last But Not Least

Optical modules are deployed to update the communication networks and data center networks for efficient traffic management with higher speeds. Optical networks are the backbone for mobile communication network. With growing demand for reliable and high speed mobile communication, optical transceivers are increasingly being used for the communication network infrastructure and be bound to thrive in optical network. There are numerous optical transceiver modules available in the market differing in the type of data transmission speed, connections and packing forms. Some of the types of optical transceivers available in the market include SFP module, SFP+, X2, XFP, Xenpak, GBIC and others. Furthermore, as per the type of connection, there are single mode (SM), multi-mode (MM) and Wavelength Division Multiplexing (WDM) modules. If you need any of the above type, feel free to contact via sales@fs.com.


# by fsmikowong | 2018-01-12 16:02 | Optical Transceiver

In computer networking, an Ethernet switch connects multiple devices, such as computers, servers, or game systems, to a Local Area Network (LAN). Small business and home offices often use an Ethernet switch to allow more than one device to share a broadband Internet connection. A gigabit Ethernet switch operates in the same way, only differentiating in data rates. Gigabit Ethernet is much greater than standard or Fast Ethernet. People can use these switches to quickly transfer data between devices in a network, or to download from the Internet at very high speeds. Gigabit Ethernet transmits at approximately one gigabit per second. That is at speeds nearly 10 times those of Fast Ethernet, which transfers data at approximately 10 megabits per second. The gigabit Ethernet switch is designed to work at these increased speeds, without signal loss or transfer rate reduction.

Gigabit Ethernet Switch

Gigabit Ethernet Switch: Managed or Unmanaged?

Gigabit Ethernet switches are either managed or unmanaged. Usually an unmanaged switch is referred as a “dumb switch”, which can be easily operated by every noob. It behaves like a “plug and play” device. A basic unmanaged gigabit Ethernet switch has no user configuration. It is placed in the network with the cables plugged in and the unit turned on, and there is nothing else to do. In contrast, a mangaed gigabit switch can be configured, and can be monitored and adjusted at your discretion, such as adjust speeds, combine users in subgroups, monitor traffic and report network activity. Although a managed switch is typically more expensive than an unmanaged switch, but it offer much greater flexibility.


Gigabit Ethernet Switch or Ethernet Hub?

Although an Ethernet switch is sometimes called a hub, because a switch performs the same job as a hub, there is a huge difference between a true hub and a gigabit Ethernet switch. An Ethernet hub is a device that connects multiple Ethernet devices to a single network. A hub does not gather information and input in one port results as an output in all ports on the network. While a gigabit switch is considered as a more intelligent hub, because it gathers information about the data packets it receives and forwards it to only the network that it was intended for.


Gigabit Ethernet Switch Recommendations

A gigabit Ethernet switch can be an inexpensive and easy way to expand your network in your home or small business. After probing into some parameters like brand, popularity, reviews and performance, here is a list of network switches including Ethernet switches for home, port gigabit Ethernet switches, cost-effective gigabit switches etc.


FS.COM S1130-8T2F 8-Port Gigabit PoE+ Managed SwitchNETGEAR GS116Ev2 16-Port Gigabit Smart Managed Plus SwitchCisco SG 300-20 (SRW2016-K9-NA) 20-Port Switch
Dimensions11 x 8.3x1.7 in16.9 x 6.6 x 2.8 in17.32 x 7.97 x 1.75 in
Ethernet Ports81620
Switching Capacity20Gbps32Gbps40Gbps
PoE StandardCompliant with IEEE802.3af/at××
Enclosure TypeRack mount - 1UDesktopDesktop, Rack-mount - 1U
Power consumption15.4W10W16.26W
Price$159.00$156.88$184.95

Conclusion

A gigabit Ethernet switch enables devices like computers and printers to connect directly to the internet instead of relying on Wi-Fi. It can speed up data transfers, resulting in faster response times and better frame rates. Additionally, a gigabit switch expands network capacity via the extra ports. Some Ethernet switches with different ports are recommended for your reference, such as FS.COM 8-port PoE switch, NETGEAR 16-port smart managed switch and Cisco 20-Port Ethernet Switch. If you need any 24 Port gigabit switch and 48 Port gigabit switch, or any equipment related to your network,visit www.fs.com for help.


# by fsmikowong | 2018-01-10 16:15 | Ethernet Switch

8-Port Ethernet Switch Best Buy

With the development of smart home and small and medium-sized businesses (SMBs), there is a growing number of PoE devices like IP cameras, VoIP phone, wireless access points (WAP), IoT devices being used. Therefore, Ethernet switches are required to be able to support numbers of PoE installations. For SMBs or large enterprises with many network devices, they may consider 24-port PoE managed switch or 48-port managed PoE switch. For small home use, 8 port PoE gigabit switch managed would be enough. This post will recommend some cost-effective 8-port Giagbit PoE switch for your reference.


NETGEAR GSS108EPP 8-Port Gigabit PoE+ Smart Managed Click Switch

NETGEAR GSS108EPP 8-Port Gigabit PoE+ Smart Managed Click Switch features innovative click mount for vertical, horizontal, flat of perpendicular mounting capabilities. It is a 8-port Gigabit Ethernet switch with 4 PoE+ ports (802.3af and 802.3at) providing up to 30w per port with 47w total PoE power budget and 4 non-PoE ports for flexible deployment. It’s greatest highlight is simple installation and silent operation. To install, just mount the bracket onto a wall, desk, table leg/pole or Virtually AnywhereTM, and "Click" the switch into the bracket. The price is about $149.99. Its specification is as followed:

CategorySmart Managed Plus
Number of Users1-50
Target Applications VoIP, Video Surveillance, Wireless, IoT
Copper Ports8 x 1G
PoE (PoE+) Ports4 (4)
PoE Budget47w
VLANs/QoS
SecurityAuto DoS prevention
Routingn/a
Form FactorClick Mount

TP-LINK TL-SG1008PE 8-Port Giagbit PoE Switch

TP-LINK TL-SG1008PE is a 8-ports 10/100/1000Base-T gigabit Ethernet unmanaged switch. It has 8 PoE+ (RJ45) ports, and supports PoE+ IEEE 802.3af/at compliant devices with total power budget of 124w and up to 30w per port. It also supports IEEE 802.3x flow control for full duplex mode and backpressure for half duplex mode, internal power supply. Moreover, with innovative energy-efficient technology, the TL-SG1008PE can save up to 75% of the power consumption. The price is about $149.99. Its specification is as followed:

Interface8 10/100/1000Mbps RJ45 Ports AUTO Negotiation/AUTO MDI/MDIX
Power Supply124W
Backbound BandwidthVoIP, Video Surveillance, Wireless, IoT
Fan Quantity1
Transfer MethodStore-And-Forward
Consumption9.5 watts (max. no PD connected)140.1 watts (max. with 124w PD connected)

FS.COM S1130-8T2F 8-Port Gigabit PoE+ Managed Switch

S1130-8T2F managed PoE+ switch comes with 8x 10/100/1000Base-T RJ45 Ethernet ports, 1x console port, and 2x gigabit SFP slots. It can supply power to network equipment such as weather-proof IP cameras with windshield wiper and heater, high-performance AP and IP telephone. This managed PoE+ switch are highly flexible, the transmission distance of the SFP fiber port can be up to 120km, and with high resistance to electromagnetic interference. It also features superior performance in stability, environmental adaptability and fanless design. The price is about $159.00. Its specification is as followed:

Switch ClassLayer2+
Switching Capacity20Gbps
Forwarding Rate 14.88Mpps
Power Consumption Per PoE PortMax. 30W
VLANsUp to 4K
Max. Power Consumption130W
Web Management InterfaceSupported
Power SupplyInput 100-240VAC, 50-60Hz

8-Port Gigabit PoE+ Managed Switch


Conclusion

From the above 8 Port Ethernet switch recommendations, we can see the three switches share both similarities and difference. All of them support PoE function and are compliant with IEEE 802.3af/at. All can be used in home and small office applications. But their maximum power consumption are different. FS.COM S1130-8T2F 8-port Giagbit PoE switch has the largest max power consumption. As for which to choose, it largely depends on your specific requirements. If you need to use PoE devices with larger power consumption and a decent price, FS.COM S1130-8T2F 8-port PoE managed switch is a better option.


# by fsmikowong | 2017-12-26 15:51

SFP-10G-SR vs. SFP-10G-SR-S

SFP-10G-SR is a popular 10G SFP+ optical transceiver in terms of quantity used. It is considered as the mainstream form factor of the 2017 market due to its matured technology and reduced price, even although 40G/100G optical modules are on the very top trend for enterprise and data center for the interconnection. But two years ago, Cisco introduced S-class optics such as SFP-10G-SR-S for enterprise and data center applications. For some web searchers, he will be recommended with SFP-10G-SR-S rather than SFP-10G-SR. But they almost share the same characteristics, so SFP-10G-SR vs. SFP-10G-SR-S, why choose one over the other? Hope this post may give some clue.


SFP-10G-SR vs. SFP-10G-SR-S: Similarity

Seemingly and technically, they don’t have much difference. SFP-10G-SR-S shares the same product specification with SFP-10G-SR. SFP-10G-SR is compliant with 10GBASE-SR standard. The Cisco 10GBASE-SR module supports a link length of 26m on standard Fiber Distributed Data Interface (FDDI)-grade multimode fiber, up to 300m link lengths over OM3 and 400m link lengths over OM4 cables.

10g-sfp-sr-

Cisco SFP-10G-SR transceiver is hot-swappable input/output device which allows a 10 Gigabit Ethernet port to link with a fiber optic network. Because it is hot-swappable and MSA compliant, the Cisco SFP-10G-SR transceiver can be plugged directly into any Cisco SFP+ based transceiver port, without the need to power down the host network system. This capability makes moves, add-ons and exchanges quick and painless.


SFP-10G-SR vs. SFP-10G-SR-S: Difference

According to Cisco, S-class optics are intended for enterprise and data center 10G and 40G applications This new set of optics does not display several unnecessary features for these applications, bringing about a more attractive price. That explains why SFP-10G-SR-S price is lower than SFP-10G-SR price.


Except the price, there are some other differences. SFP-10G-SR-S optics aren’t TAA certified. However, the non-S-class optics such as SFP-10G-SR are all compliant to TAA. SFP-10G-SR-S optics only have COM (Commercial temperature range: 0~70℃). However, the temperature range of SFP-10G-SR can be EXT (Extended temperature range: -5~85℃), IND (Industrial temperature range: -40~85℃) and Storage temperature range (-40~85℃). In terms of protocols, SFP-10G-SR-S optics use Ethernet only, they cannot use OTN (Optical Transport Network) or WAN-PHY (Wide Area Network Physics). Furthermore, SFP-10G-SR-S optics just have 10G and 40G applications so far which is specified for 10G and 40G enterprise and data center. Thus, if you don’t need any special features like extra tolerance for temperature, S-Class optics can save you a considerable amount of money.


SFP-10G-SR Price Comparison

Since equipment SFP-10G-SR vendors all rely on MSAs when designing their transceivers, every supplier can produce the transceiver modules with the same functions but with different prices. Unless you have a 100% requirement to buy Cisco, there are a lot of 3rd party compatible vendors out there that you can save a lot of money by using. Here is a price list from different vendors for you to choose from.


VendorModelBrandPrice
CDWSFP-10G-SRCisco$693.99
Router-SwitchSFP-10G-SRCisco$262.00
MonopriceSFP-10G-SRIronlink$136.75
10GtekSFP-10G-SR10Gtek$41.05
FS.COMSFP-10G-SRFS.COM$16.00

Conclusion

Although SFP-10G-SR vs. SFP-10G-SR-S, they share identical specification, there still are some minor difference. In most cases, SFP-10G-SR-S optics are recommended for 10G and 40G applications due to its low cost.both SFP-10G-SR price and SFP-10G-SR-S price is relatively lower according to the above chart, and they also enjoy good quality. If you need any third-party optical modules or fiber optic cables, give FS.COM a shot.


# by fsmikowong | 2017-12-13 11:35 | Optical Transceiver

With the rapid development of optical communication, more and more fiber optic cables are increasingly used in different environments. What if under harsh conditions? Then it’s crucial to ensure your cables smooth and reliable operation when transmitting data. This is where armoured cable comes into play. An armoured cable, as its name suggests, is protected against mechanical damage, whereas an unarmoured cable not being protected. What is the difference between them? And why should we choose armored cable over unarmoured cable? You my find answer in this post.


Amoured Cable Overview

Armoured cable has an extra layer of protection to keep it from being cut or abraded. The armor layer of coax cable is a foil wrap that is ribbed like corrugated metal to allow for flexibility, around the inside and outside of that wrap is a flooding compound to keep moisture from penetrating the cable and causing an impairment. The internal structure of 4 core armoured cable consists of many layers to prevent the cable from damage. The outer jacket provides protection against rodent, abrasion and twist, which is usually made of plastic. And the armoring materials are mainly come from kevlar, steel, and aluminum foils, aiming to protect the armored cable from being stretched during installation.

structure-of-armored-cable

Difference Between Armoured Cable And Unarmoured Cable
Structure

Many people may think that armoured cable just has metal protection. To be precise, the armoring material doesn’t have to be metal, it can be fiber yarn, glass yarn, polyethylene etc. The only thing that makes armored cable different from unarmored cable is that the former has an additional outer protective layer for optical cable. The 4 core armoured cable tends to be more expensive than unarmored cable, while the armoured cable with steel strip and aluminum is much cheaper than armored fiber cable with Kevlar, which is usually used for special occasions.

Difference-between-Armored-Non-Armored-Cable

Application

Armoured cable is installed in locations exposed to mechanical damage, such as on the outsides of walls, as an alternative to conduit. Armoured cable usually has a small metal ribbon to ensure electrical continuity of the safety ground. (You must run a separate ground wire in flexible conduit too; you can't depend on the continuity of the conduit.) In HT & LT distribution, 4 core armoured cable is preferred. Inside walls and in other protected locations, less expensive unarmored electrical cable can be installed instead. Unarmoured cable is mainly used for control systems.


Why Should Use Armoured Cable Over Unarmoured Cable?

There are a couple of reasons that armoured cable should be used. The biggest reason is about strength, because armored cable was used more extensively in past decades when cable was simply directly buried under dirt and not used through a conduit. Nowadays most local municipalities require conduits to be trenched in prior to installing network components, thus eliminating the need for unarmored cable in most applications. Secondly, rodents or animals can and will chew through cables so the armor protects the cables from damage by animal or shoveling in direct bury applications. Thirdly, the most uncommon reason it would be used is in an RF environment that has an off air RF signal that is powerful enough to interfere with your network, the armor when grounded can provide another layer of RF protection.


Conclusion

Armoured cable can be regarded as a kind of strengthened cable, which is harder and stronger than standard optical cable. With an unparalleled protection against physical damage without sacrificing flexibility or functionality within fiber networks, 4 core armored cable is a perfect addition to any fiber network in hazardous environments.


# by fsmikowong | 2017-12-07 12:59 | Fiber Optic Cable